A New Model for Strategy Formulation Using Mahalanobis-Taguchi System and Clustering Algorithm
نویسندگان
چکیده
The devastating complexity of decision making in severe dynamic competitive environment of the universe, has forced the wise managers to have relevant strategic plans for their firms. In this paper, a new approach by utilizing Mahalanobis-Taguchi System (MTS) and clustering algorithm in formulating the strategy has been proposed. In this approach, first by performing environmental analysis all internal and external factors affecting organization will be listed. Then the long range goals will be identified by top managers. By applying MTS the main set of factors affecting goals will come out. By identifying main factors, the goal-factor matrix will be formed. At this stage, by using clustering algorithm the proper clusters containing goals and factors influencing them will be constructed. Finally, from the created clusters the appropriate strategies would be generated. The advantage of applying this method is its accuracy and ease of applications in the environment with plenty of goals and numerous factors with interactions among them.
منابع مشابه
Mahalanobis-Taguchi System-based criteria selection for strategy formulation: a case in a training institution
The increasing complexity of decision making in a severely dynamic competitive environment of the universe has urged the wise managers to have relevant strategic plans for their firms. Strategy is not formulated from one criterion but from multiple criteria in environmental scanning, and often, considering all of them is not possible. A list of criteria utilizing Delphi was selected by consu...
متن کاملA New Approach in Strategy Formulation using Clustering Algorithm: An Instance in a Service Company
The ever severe dynamic competitive environment has led to increasing complexity of strategic decision making in giant organizations. Strategy formulation is one of basic processes in achieving long range goals. Since, in ordinary methods considering all factors and their significance in accomplishing individual goals are almost impossible. Here, a new approach based on clustering method is pro...
متن کاملFeature Selection in Big Data by Using the enhancement of Mahalanobis–Taguchi System; Case Study, Identifiying Bad Credit clients of a Private Bank of Islamic Republic of Iran
The Mahalanobis-Taguchi System (MTS) is a relatively new collection of methods proposed for diagnosis and forecasting using multivariate data. It consists of two main parts: Part 1, the selection of useful variables in order to reduce the complexity of multi-dimensional systems and part 2, diagnosis and prediction, which are used to predict the abnormal group according to the remaining us...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملIdentifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System
The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Information Management
دوره 3 شماره
صفحات -
تاریخ انتشار 2011